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HIGH ORDER VARIATIONAL INTEGRATORS IN THE OPTIMAL
CONTROL OF MECHANICAL SYSTEMS

CÉDRIC M. CAMPOS, SINA OBER-BLÖBAUM, AND EMMANUEL TRÉLAT

Abstract. In recent years, much effort in designing numerical methods for the simulation and
optimization of mechanical systems has been put into schemes which are structure preserving.
One particular class are variational integrators which are momentum preserving and symplectic.
In this article, we develop two high order variational integrators which distinguish themselves in
the dimension of the underling space of approximation and we investigate their application to
finite-dimensional optimal control problems posed with mechanical systems. The convergence
of state and control variables of the approximated problem is shown. Furthermore, by analyzing
the adjoint systems of the optimal control problem and its discretized counterpart, we prove
that, for these particular integrators, dualization and discretization commute.

1. Introduction

In practice, solving an optimal control problem requires the a priori choice of a numerical
method. Many approaches do exist, that are either based on a direct discretization of the optimal
control problem, resulting into a nonlinear programming problem, or based on the application of
the Pontryagin Maximum Principle, reducing into a boundary value problem. The first class of
approaches are called direct, and the second ones, based on the preliminary use of the Pontryagin
maximum principle, are called indirect. It can be noted that indirect methods, although very
precise, suffer from an important drawback: Unless one already has a good knowledge of the
optimal solution, they are very difficult to initialize since they are extremely sensitive to the
initial guess. Although many solutions exist in order to carefully initialize a shooting method (see
[50, 51]), in most of engineering applications direct approaches are preferred due to their simplicity
and robustness. Roughly speaking, direct methods consist of

(1) discretizing first the cost and the differential system, in order to reduce the optimal control
problem to a usual nonlinear minimization problem with constraints, also called nonlinear
programming problem (NLP), with dimension inversely proportional to the smoothness
of the discretization;

(2) and then dualizing, by applying for instance a Lagrange-Newton method to the NLP,
deriving the Karush-Kuhn-Tucker equations (KKT), also called discrete adjoint system,
and applying a Newton method to solve the resulting optimality system.

Many variants exist, e.g. [3]). In contrast, indirect methods consist of
(1) first dualizing the optimal control problem to derive the adjoint system, by applying

the Pontryagin Maximum Principle (PMP) (or, equivalently, the Lagrange multipliers
necessary condition for optimality in infinite dimension),

(2) and then discretizing, by applying a shooting method (that is, a Newton method composed
with a numerical integration method).

In shorter words, direct methods consist of 1) discretize, 2) dualize, and indirect methods consist of
the converse: 1) dualize, 2) discretize. It is natural to wonder whether this diagram is commutative
or not, under usual approximation assumptions.

Since the pioneering works of [17, 42], it is well known by now that, in spite of usual assumptions
ensuring consistency and stability, direct methods may diverge. In other words discretization and
dualization do not commute in general. This is due to a complex interplay with the mesh, to the
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appearance of spurious highfrequencies ultimately causing the divergence (see [17] for very simple
finite-dimensional linear quadratic problems and [53] for infinite-dimensional wave equations).

Several remedies and solutions exist, from which [4, 16, 17, 43] are a representative sample.
For instance, the results of [17] assert the convergence of optimal control problems under specific
smoothness and coercivity assumptions provided that the underlying discretization method be
based on a Runge-Kutta method. However, the convergence order of the optimal control solution,
which depends on the convergence order of the state and the resulting adjoint scheme, is reduced
compared to the order of the Runge-Kutta method applied to the state system. Indeed, the
discrete state and adjoint system constitutes a symplectic partitioned Runge-Kutta method for
which order conditions on the Runge-Kutta coefficients are derived to preserve the convergence
rates. Whereas in [17] the symplectic partitioned Runge-Kutta scheme for state and adjoint is
explicitly derived, in a recent overview article [44] a proof is given based on a relation between
quadratic invariants (that are also naturally preserved by symplectic partitioned Runge-Kutta
integrators) and the fulfillment of the KKT equations. The preservation of convergence rates is
referred to as the Covector Mapping Principle (CMP) (see e.g. [16]). More precisely, the CMP
is satisfied if there exists an order-preserving map between the adjoint variables corresponding to
the dualized discrete problem (KKT) and the discretized dual problem (discretized PMP). For the
class of Legendre pseudospectral methods the CMP is proven if additional closure conditions are
satisfied (see [16, 43]), whereas for Runge-Kutta methods the CMP holds if the order conditions
on the Runge-Kutta coefficients derived in [17] are satisfied. For a detailed discussion on the
commutation properties we refer to [42].

While for general dynamical systems, many studies of discretizations of optimal control prob-
lems are based on Runge-Kutta methods (see e.g. [12, 13, 18, 21, 52]), particularly for mechanical
systems, much effort in designing numerical methods for the simulation and optimization of such
systems has been put into schemes which are structure preserving in the sense that important
qualitative features of the original dynamics are preserved in its discretization (for an overview on
structure preserving integration methods see e.g. [19]). One special class of structure preserving
integrators is the class of variational integrators, introduced in [36, 47], which are symplectic and
momentum-preserving and have an excellent long-time energy behavior. Variational integrators
are based on a discrete variational formulation of the underlying system, e.g. based on a discrete
version of Hamilton’s principle or of the Lagrange-d’Alembert principle for conservative [29, 30]
or dissipative [24] mechanical systems, respectively. They have been further extended to different
kind of systems and applications, e.g. towards constrained [11, 25, 31], non smooth [14], multirate
and multiscale [32, 46, 48], Lagrangian PDE systems [28, 35] and electric circuits [41]. In the cited
works, typically quadrature rules of first or second order are used in order to approximate the
action functional of the system. To design high order variational integrators, higher order quadra-
ture rules based on polynomial collocation can be employed. Such so called Galerkin variational
integrators have been introduced in [36] and further studied in [6, 20, 27, 38, 40].

For numerically solving optimal control problems by means of a direct method, the use of
variational integrators for the discretization of the problem has been proposed in [8, 33, 39]. This
approach, denoted by DMOC (Discrete Mechanics and Optimal Control), yields a finite-difference
type discretization of the dynamical constraints of the problem which by construction preserves
important structural properties of the system, like the evolution of momentum maps associated
to symmetries of the Lagrangian or the energy behavior. For one class of Galerkin variational
integrators, that is equivalent to the class of symplectic partitioned Runge-Kutta methods, the
adjoint system and its convergence rates are analyzed in [39]. It is shown that, in contrast
to a discretization based on standard Runge-Kutta methods in [17], the convergence order of
the discrete adjoint system is the same as for the state system due to the symplecticity of the
discretization scheme. In particular, we obtain the same symplectic-momentum scheme for both
state and adjoint system, that means that discretization and dualization commute for this class
of symplectic schemes and the CMP is satisfied. For general classes of variational integrators, the
commutation property is still an open question. The contribution of this work is twofold:

(1) We derive two different kinds of high order variational integrators based on different dimen-
sions of the underling polynomial approximation (Section 3). While the first well-known
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integrator is equivalent to a symplectic partitioned Runge-Kutta method, the second inte-
grator, denoted as symplectic Galerkin integrator, yields a “new” method which in general,
cannot be written as a standard symplectic Runge-Kutta scheme.

(2) For the application of high order variational integrators to finite-dimensional optimal
control problems posed with mechanical systems, we show the convergence of state and
control variables and prove the commutation of discretization and dualization (Sections 4
and 5).

The paper is structured as follows: In Section 2 the optimal control problem for a mechanical
system is introduced. Its discrete version is formulated in Section 3 based on the derivation
of two different kinds of high order variational integrators. The first main result is stated in
Section 4: Under specific assumptions on the problem setting we prove the convergence of the
primal variables for an appropriate choice of the discrete controls (Theorem 4.1). Along the lines
of [18], we demonstrate the influence of the control discretization on the convergence behavior by
means of several examples. In Section 5 the discrete adjoint system for the symplectic Galerkin
method is derived. It turns out that the reformulation of the variational scheme in Section 3
simplifies the analysis. Whereas commutation of discretization and dualization for symplectic
partitioned Runge-Kutta methods has already been shown in [39], we prove the same commutation
property for the symplectic Galerkin discretization (Theorem 5.2), which is the second main result
of this work. In contrast to the discretization with Legendre pseudospectral methods or classical
Runge-Kutta methods, no additional closure conditions (see [16]) or conditions on the Runge-
Kutta coefficients (see [17]) are required to satisfy the CMP, respectively. Furthermore, using the
high order variational integrators presented here, not only the order but also the discretization
scheme itself is preserved, i.e. one yields the same schemes for the state and the adjoint system.
We conclude with a summary of the results and an outlook for future work in Section 6.

2. Optimal control for mechanical systems

2.1. Lagrangian dynamics. One of the main subjects of Geometric Mechanics is the study
of dynamical systems governed by a Lagrangian. Typically, one considers a mechanical system
with configuration manifold Q ⊆ Rn together with a Lagrangian function L : TQ → R, where
the associated state space TQ describes the position q and velocity q̇ of a particle moving in
the system. Usually, the Lagrangian takes the form of kinetic minus potential energy, L(q, q̇) =
K(q, q̇)− V (q) = 1

2 q̇
T ·M(q) · q̇ − V (q), for some (positive definite) mass matrix M(q).

A consequence of the principle of least action, also known as Hamilton’s principle, establishes
that the natural motions q : [0, T ]→ Q of the system are characterized by stationary solutions of
the action, thus, motions satisfying

(1) δ

∫ T

0

L(q(t), q̇(t)) dt = 0

for zero initial and final variations δq(0) = δq(T ) = 0. The resulting equations of motion are the
Euler-Lagrange equations (refer to [1]),

(2)
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 .

When the Lagrangian is regular, that is when the velocity Hessian matrix ∂2L/∂q̇2 is non-
degenerate, the Lagrangian induces a well defined map, the Lagrangian flow, F tL : TQ → TQ
by F tL(q0, q̇0) := (q(t), q̇(t)), where q ∈ C2([0, T ], Q) is the unique solution of the Euler-Lagrange
equation (2) with initial condition (q0, q̇0) ∈ TQ. By means of the Legendre transform legL :
(q, q̇) ∈ TQ 7→ (q, p = ∂L

∂q̇ |(q,q̇)) ∈ T ∗Q, where T ∗Q is the phase space of positions q and momenta
p, one may transform the Lagrangian flow into the Hamiltonian flow F tH : T ∗Q → T ∗Q defined
by F tH(q0, p0) := legL(q(t), q̇(t)).

Moreover, different preservation laws are present in these systems. For instance the Hamiltonian
flow preserves the natural symplectic structure of T ∗Q and the total energy of the system, typically
H(q, p) = K(q, p) + V (q) = 1

2 p
T ·M(q)−1 · p− V (q) (here K still denotes the kinetic energy, but

depending on p rather than on q̇). Also, if the Lagrangian possess Lie group symmetries, then
Noether’s theorem asserts that the associated momentum maps are conserved, like for instance
the linear momentum and/or the angular momentum.
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If external (non conservative) forces F : (q, q̇) ∈ TQ 7→ (q, F (q, q̇)) ∈ T ∗Q are present in the
system, Hamilton’s principle (1) is replaced by the Lagrange-d’Alembert principle seeking for
curves that satisfy the relation

(3) δ

∫ T

0

L(q, q̇) dt+

∫ T

0

F (q, q̇) · δq dt = 0

for zero boundary variations δq(0) = δq(T ) = 0, where the second term is denoted as virtual work.
This principle leads to the forced Euler-Lagrange equations

(4)
d

dt

∂L

∂q̇
− ∂L

∂q
= F (q, q̇) .

The forced version of Noether’s theorem (see e.g. [36]) states that if the force acts orthogonal to
the symmetry action, then momentum maps are still preserved by the flow. Otherwise, the change
in momentum maps and energy is determined by the amount of forcing in the system.

2.2. Optimal control problem. Since we are interested in optimally controlling Lagrangian
systems, we assume that the mechanical system may be driven by means of some time dependent
control parameter u : [0, T ] → U with U ⊂ Rm being the control set. Typically, the control
appears as an extra variable in the external force such that in the following we consider forces of
the form F : TQ× U → T ∗Q and we replace the right-hand side of (4) by the control dependent
force term F (q, q̇, u).

An optimal control problem for a mechanical system reads (also denoted as Lagranigan optimal
control problem in [39])

Problem 2.1 (Lagrangian optimal control problem (LOCP)).

(5a) min
q,q̇,u

J(q, q̇, u) =

∫ T

0

C(q(t), q̇(t), u(t)) dt+ Φ(q(T ), q̇(T ))

subject to

δ

∫ T

0

L(q(t), q̇(t)) dt+

∫ T

0

F (q(t), q̇(t), u(t)) · δq(t) dt = 0,(5b)

(q(0), q̇(0)) = (q0, q̇0),(5c)

with minimization over q ∈ C1,1([0, T ], Q) = W 2,∞([0, T ], Q), q̇ ∈ W 1,∞([0, T ], TqQ) and u ∈
L∞([0, T ], U). The interval length T may either be fixed, or appear as degree of freedom in
the optimization problem. Since any optimal control problem with free final time can easily be
transformed into a problem with fixed final time (see e.g. [15]), we assume the time T to be fixed
from now on. The control set U ⊂ Rm is assumed to be closed and convex, and the density cost
function C : TQ×U 7→ R and the final cost function Φ: TQ 7→ Rn are continuously differentiable,
being Φ moreover bounded from below.

Henceforth we should assume that the Lagrangian is regular, i.e. there is a (local) one-to-one
correspondence between the velocity q̇ and the momentum p via the Legendre transform and its
inverse

p =
∂L

∂q̇
(q, q̇) and q̇ =

(
∂L

∂q̇

)−1
(q, p).

Thus, the forced Euler-Lagrange equations (4) can be transformed into the partitioned system

(6) q̇(t) = f(q(t), p(t)) , ṗ(t) = g(q(t), p(t), u(t))

with

(7) f(q, p) =

(
∂L

∂q̇

)−1
(q, p) and g(q, p, u) =

∂L

∂q
(q, f(q, p)) + F (q, f(q, p), u) .

With some abuse of notation we denote the force and the cost functions defined on T ∗Q × U
and T ∗Q, respectively, by F (q, p, u) := F (q, f(q, p), u), C(q, p, u) := C(q, f(q, p), u) and Φ(q, p) :=
Φ(q, f(q, p)) such that Problem 2.1 can be formulated as an optimal control problem for the
partitioned system (6).
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Problem 2.2 (Optimal control problem (OCP)).

(8a) min
q,p,u

J(q, p, u) =

∫ T

0

C(q(t), p(t), u(t)) dt+ Φ(q(T ), p(T ))

subject to

q̇(t) = f(q(t), p(t)) , q(0) = q0 ,(8b)

ṗ(t) = g(q(t), p(t), u(t)) , p(0) = p0,(8c)

with minimization over q ∈W 2,∞([0, T ], Q), p ∈W 1,∞([0, T ], T ∗qQ) and u ∈ L∞([0, T ], U) and the
functions f : T ∗Q 7→ Rn, g : T ∗Q× U 7→ Rn are assumed to be Lipschitz continuous.

The first order necessary optimality conditions can be derived by means of the Hamiltonian for
the optimal control problem given by

(9) H(q, p, u, λ, ψ, ρ0) = ρ0C(q, p, u) + λ · f(q, p) + ψ · g(q, p, u)

with ρ0 ∈ R and λ and ψ are covectors in Rn.

Theorem 2.3 (Minimum Principle, e.g. [15]). Let (q∗, p∗, u∗) ∈W 2,∞([0, T ], Q)×W 1,∞([0, T ], T ∗q∗Q)×
L∞([0, T ], U) be an optimal solution to Problem 2.2. Then there exist functions λ ∈W 1,∞([0, T ],Rn)
and ψ ∈ W 1,∞([0, T ],Rn) and a constant ρ0 ≥ 0 satisfying (ρ0, λ, ψ) 6= (0, 0, 0) for all t ∈ [0, T ]
such that

(10a) H(q∗(t), p∗(t), u∗(t), λ(t), ψ(t), ρ0) = min
u∈U
H(q(t), p(t), u, λ(t), ψ(t), ρ0) ,

for t ∈ [0, T ], and (ρ0, λ, ψ) solves the following initial value problem:

λ̇ = −∇qH(q∗, p∗, u∗, λ, ψ, ρ0), λ(T ) = ρ0∇qΦ(q∗(T ), p∗(T )),(10b)

ψ̇ = −∇pH(q∗, p∗, u∗, λ, ψ, ρ0), ψ(T ) = ρ0∇pΦ(q∗(T ), p∗(T )).(10c)

The vectors λ(t) and ψ(t) are the costate or the adjoint variables of the Hamiltonian equations
of optimal control. The scalar ρ0 is called the abnormal multiplier. In the abnormal case, it holds
ρ0 = 0, and otherwise the multiplier can be normalized to ρ0 = 1. Since no final constraint on
the state is present in the optimal control problem, the above principle holds true with ρ0 = 1 (as
proved for instance in [50]).

Remark 2.4. If g is affine w.r.t. u, then the topologies can be taken as L2 for the controls,
H2 = W 2,2 on q and H1 = W 1,2 on p, and the PMP would still be valid for these classes. Besides,
optimal control problems where the optimal control is in L2 but not in L∞ are very seldom. For
instance, if one is able to express u in function of (q, p, λ, ψ), as for the assumptions of Theorem
5.2, then u is clearly in L∞.

3. Discretization

Since we are interested in solving optimal control problems by some kind of direct method, a
discrete approximation of Problem 2.2 is required. To this end, we first introduce two different
variational integrators that we employ for the approximation of the control system given in (8b)-
(8c). Based on these discrete schemes, we derive the discrete approximations of the optimal
control problem that can be solved by standard numerical optimization methods. The controls
play no role in the derivations of the variational integrators, therefore we will omit temporarily
the dependence of the external force F on u, which will lighten the notation. The discrete schemes
including the approximation of the controls are given in Section 3.3.

3.1. Discrete Mechanics and Variational Integrators. Discrete Mechanics is, roughly speak-
ing, a discretization of Geometric Mechanics theory. As a result, one obtains a set of discrete
equations corresponding to the Euler-Lagrange equation (4) above but, instead of a direct dis-
cretization of the ODE, the latter are derived from a discretization of the base objects of the theory,
the state space TQ, the Lagrangian L, etc. In fact, one seeks for a sequence {(t0, q0), (t1, q1), . . . ,
(tN , qN )} that approximates the actual trajectory q(t) of the system (qk ≈ q(tk)), for a constant
time-step h = tk+1 − tk > 0.
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A variational integrator is an iterative rule that outputs this sequence and it is derived in an
analogous manner to the continuous framework. Given a discrete Lagrangian Ld : Q×Q→ R and
discrete forces F±d : Q×Q→ T ∗Q, which are in principle thought to approximate the continuous
Lagrangian action and the virtual work, respectively, over a short time

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt ,(11a)

F−d (qk, qk+1) · δqk + F+
d (qk, qk+1) · δqk+1 ≈

∫ tk+1

tk

F (q(t), q̇(t)) · δq(t)dt ,(11b)

one applies a variational principle to derive the well-known forced discrete Euler-Lagrange (DEL)
equation,

(12) D1Ld(qk, qk+1) +D2Ld(qk−1, qk) + F−d (qk, qk+1) + F+
d (qk−1, qk) = 0 ,

for k = 1, . . . , N−1, where Di stands for the partial derivative with respect to the i-th component.
The equation defines an integration rule of the type (qk−1, qk) 7→ (qk, qk+1), however if we define
the pre- and post-momenta (also denoted as discrete Legendre transforms)

p−k := −D1Ld(qk, qk+1)− F−d (qk, qk+1), k = 0, . . . , N − 1, and(13a)

p+k := D2Ld(qk−1, qk) + F+
d (qk−1, qk), k = 1, . . . , N,(13b)

the discrete Euler-Lagrange equation (12) is read as the momentum matching p−k = p+k =: pk and
defines an integration rule of the type (qk, pk) 7→ (qk+1, pk+1).

The nice part of the story is that the integrators derived in this way naturally preserve (or nearly
preserve) the quantities that are preserved in the continuous framework, the symplectic form, the
total energy (for conservative systems) and, in presence of symmetries, the linear and/or angular
momentum (for more details, see [36]). Furthermore, other aspects of the continuous theory can
be “easily” adapted, symmetry reduction [7, 10, 22], constraints [23, 25], control forces [8, 39], etc.

3.2. High Order Variational Integrators. High order variational integrators for time depen-
dent or independent systems (HOVI[t]) are a class of integrators that, by using a multi-stage
approach, aim at a high order accuracy on the computation of the natural trajectories of a
mechanical system while preserving some intrinsic properties of such systems. In particular,
symplectic-partitioned Runge-Kutta methods (spRK) and, what we call here, symplectic Galerkin
methods (sG) are s-stage variational integrators of order up to 2s.

The derivation of these methods follows the general scheme that comes next, the specifics of each
particular case are detailed in the following subsections. For a fixed time step h, one considers
a series of points qk, refereed as macro-nodes. Between each couple of macro-nodes (qk, qk+1),
one also considers a set of micro-data, the s stages: For the particular cases of sG and spRK
methods, we consider micro-nodes Q1, . . . , Qs and micro-velocities Q̇1, . . . , Q̇s, respectively. Both
macro-nodes and micro-data (micro-nodes or micro-velocities) are required to satisfy a variational
principle, giving rise to a set of equations, which properly combined, define the final integrator.

Here and after, we will use the following notation: Let 0 ≤ c1 < . . . < cs ≤ 1 denote a set of
collocation points and consider the associated Lagrange polynomials and nodal weights, that is,

lj(t) :=
∏
i 6=j

t− ci
cj − ci

and bj :=

∫ 1

0

lj(t)dt ,

respectively. Note that the pair of (ci, bi)’s define a quadrature rule and that, for appropriate ci’s,
this rule may be a Gaussian-like quadrature, for instance, Gauss-Legendre, Gauss-Lobatto, Radau
or Chebyshev.

Now, for the sake of simplicity and independently of the method, we will use the same notation
for the nodal coefficients. We define for spRK and sG, respectively,

(14) aij :=

∫ ci

0

lj(t)dt and aij :=
dlj

dt

∣∣∣
ci
.

Moreover, for spRK, we will also use the nodal weights and coefficients (b̄j , āij) given by Equation
(22) and, for sG, the source and target coefficients

αj := lj(0) and βj := lj(1) .
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Finally, if L denotes a Lagrangian from Rn×Rn to R coupled with an external force F : (q, q̇) ∈
Rn × Rn 7→ (q, F (q, q̇)) ∈ Rn × Rn, then we define

Pi :=
∂L

∂q̇

∣∣∣
i

=
∂L

∂q̇

∣∣∣
(Qi,Q̇i)

and Ṗi :=
∂L

∂q

∣∣∣
i
+ Fi =

∂L

∂q

∣∣∣
(Qi,Q̇i)

+ F (Qi, Q̇i) ,

where (Qi, Q̇i) are couples of micro-nodes and micro-velocities given by each method. Besides, Di

will stand for the partial derivative with respect to the i-th component.

3.2.1. Symplectic-Partitioned Runge-Kutta Methods. Although the variational derivation of spRK
methods in the framework of Geometric Mechanics is an already known fact (see [36] for an
“intrinsic” derivation, as the current, or [19] for a “constrained” one), both based on the original
works of [47, 45], we present it here again in order to ease the understanding of and the comparison
with sG methods below.

Given a point q0 ∈ Rn and vectors {Q̇i}i=1,...,s ⊂ Rn, we define the polynomial curves

Q̇(t) :=

s∑
j=1

lj(t/h)Q̇j and Q(t) := q0 + h

s∑
j=1

∫ t/h

0

lj(τ)dτQ̇j .

We have

(15) Q̇i = Q̇(h · ci) and Qi := Q(h · ci) = q0 + h

s∑
j=1

aijQ̇j .

Note that the polynomial curve Q is uniquely determined by q0 and {Q̇i}i=1,...,s. In fact, it is the
unique polynomial curve Q of degree s such that Q(0) = q0 and Q̇(h · ci) = Q̇i. However, if we
define the configuration point

(16) q1 := Q(h · 1) = q0 + h

s∑
j=1

bjQ̇j

and consider it fixed, then Q is uniquely determined by q0, q1 and the Q̇i’s but one. Namely, take
any 1 ≤ i0 ≤ s such that bi0 6= 0 and fix it, then

Q̇i0 =

q1 − q0
h

−
∑
j 6=i0

bjQ̇j

 /bi0 .

We now define the multi-vector discrete Lagrangian

(17) Ld(Q̇1, . . . , Q̇s) := h

s∑
i=1

biL(Qi, Q̇i)

and the multi-vector discrete force

Fd(Q̇1, . . . , Q̇s) · (δQ1, . . . , δQs) := h

s∑
i=1

biF (Qi, Q̇i) · δQi .

Although not explicitly stated, they both depend also on q0. If we write the micro-node variations
δQi in terms of the micro-velocity variations δQ̇i (by definition (15)), we have that the multi-vector
discrete force is

Fd(Q̇1, . . . , Q̇s) · (δQ1, . . . , δQs) = h2
s∑
j=1

s∑
i=1

biaijF (Qi, Q̇i) · δQ̇j .

The two-point discrete Lagrangian is then

(18) Ld(q0, q1) := ext
Ps([0,h],Rn,q0,q1)

Ld(Q̇1, . . . , Q̇s)

where Ps([0, h],Rn, q0, q1) is the space of polynomials Q of order s from [0, h] to Rn such that
Q(0) = q0 and Q(h) = q1 and the vectors Q̇i’s determine such polynomials as discussed above.
The so called “extremal” is realized by a polynomial Q ∈ Ps([0, h],Rn, q0, q1) such that

(19) δLd(Q̇1, . . . , Q̇s) · (δQ̇1, . . . , δQ̇s) + Fd(Q̇1, . . . , Q̇s) · (δQ1, . . . , δQs) = 0
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for any variations (δQ̇1, . . . , δQ̇s), taking into account that δq0 = δq1 = 0 and that δQ̇i0 =∑
j 6=i0 ∂Q̇i0/∂Q̇jδQ̇j . For convenience, the previous equation (19) is developed afterwards.
The two-point discrete forward and backward forces are then

(20) F±d (q0, q1) · δ(q0, q1) := h

s∑
i=1

biF (Qi, Q̇i) ·
∂Qi
∂q±

δq± ,

where q− = q0 and q+ = q1. Using the previous relations, we may write

F−d = h

s∑
i=1

bi(1− aii0/bi0)Fi and F+
d = h

s∑
i=1

biaii0/bi0Fi .

By the momenta-matching rule (13), we have that

−p0 = −Di0Ld(Q̇1, . . . , Q̇s)/(hbi0) +Dq0Ld(Q̇1, . . . , Q̇s) + F−d ,

p1 = Di0Ld(Q̇1, . . . , Q̇s)/(hbi0) + F+
d .

where Dq0 stands for the partial derivative with respect to q0. Combining both equations, we
obtain that

Di0Ld + h2
s∑
i=1

biaii0Fi = hbi0p1 and p1 = p0 +Dq0Ld + h

s∑
i=1

biFi .

Coming back to Equation (19), we have that

0 = δLd(Q̇1, . . . , Q̇s) · (δQ̇1, . . . , δQ̇s) + Fd(Q̇1, . . . , Q̇s) · (δQ1, . . . , δQs)

=
∑
j 6=i0

(
DjLd + h2

s∑
i=1

biaijFi +
∂Q̇i0
∂Q̇j

(
Di0Ld + h2

s∑
i=1

biaii0Fi

))
δQ̇j .

Therefore, for j 6= i0, we have that

DjLd + h2
s∑
i=1

biaijFi = bj/bi0 ·
(
Di0Ld + h2

s∑
i=1

biaii0Fi

)
.

Thus, the integrator is defined by

DjLd(Q̇1, . . . , Q̇s) + h2
s∑
i=1

biaijFi = hbjp1 ,(21a)

q1 = q0 + h

s∑
j=1

bjQ̇j ,(21b)

p1 = p0 +Dq0Ld(Q̇1, . . . , Q̇s) + h

s∑
i=1

biFi .(21c)

Besides, using the definition of the discrete Lagrangian, we have

DjLd(Q̇1, . . . , Q̇s) + h2
s∑
i=1

biaijFi = h2
s∑
i=1

biaijṖi + hbjPj ,

Dq0Ld(Q̇1, . . . , Q̇s) + h

s∑
i=1

biFi = h

s∑
i=1

biṖi .

Therefore, we may write

Pj = p0 + h

s∑
i=1

bi(1− aij/bj)Ṗi = p0 + h

s∑
i=1

ājiṖi ,

p1 = p0 + h

s∑
i=1

biṖi = p0 + h

s∑
i=1

b̄iṖi ,

were āij and b̄i are given by

(22) biāij + b̄jaji = bib̄j , bi = b̄i .
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In summary, the equations that define the spRK integrator (with forces), are together with (22)

q1 =q0 + h

s∑
j=1

bjQ̇j , p1 =p0 + h

s∑
j=1

b̄jṖj ,(23a)

Qi =q0 + h

s∑
j=1

aijQ̇j , Pi =p0 + h

s∑
j=1

āijṖj ,(23b)

Pi =
∂L

∂q̇
(Qi, Q̇i) , Ṗi =

∂L

∂q
(Qi, Q̇i) + F (Qi, Q̇i) .(23c)

3.2.2. Symplectic Galerkin Methods. Galerkin methods are a class of methods to transform a
problem given by a continuous operator (such as a differential operator) to a discrete problem. As
such, spRK methods fall into the scope of this technique and could be also classified as “symplectic
Galerkin” methods. However, we want to stress on the difference between what is called spRK in
the literature and what we refer here as sG. The wording should not be confused by the one used
in [36].

Given points {Qi}i=1,...,s ⊂ Rn, we define the polynomial curves

Q(t) :=

s∑
j=1

lj(t/h)Qj and Q̇(t) :=
1

h

s∑
j=1

l̇j(t/h)Qj .

We have

Qi = Q(h · ci) and Q̇i := Q̇(h · ci) =
1

h

s∑
j=1

aijQj .

Note that the polynomial curve Q is uniquely determined by the points {Qi}i=1,...,s. In fact, it is
the unique polynomial curve Q of degree s− 1 such that Q(h · ci) = Qi. However, if we define the
configuration points

(24) q0 := Q(h · 0) =

s∑
j=1

αjQj and q1 := Q(h · 1) =

s∑
j=1

βjQj

and consider them fixed, then Q is uniquely determined by q0, q1 and the Qi’s but a couple. For
instance, we may consider Q1 and Qs as functions of the others, since the relations (24) define a
system of linear equations where the coefficient matrix has determinant γ := α1βs − αsβ1 6= 0 (if
and only if c1 6= cs). More precisely,(

Q1

Qs

)
=

1

γ

(
βs −αs
−β1 α1

)(
q0 −

∑s−1
j=2 α

jQj
q1 −

∑s−1
j=2 β

jQj

)
.

We now define the multi-point discrete Lagrangian

(25) Ld(Q1, . . . , Qs) := h

s∑
i=1

biL(Qi, Q̇i)

and the multi-vector discrete force

Fd(Q1, . . . , Qs) · (δQ1, . . . , δQs) := h

s∑
i=1

biF (Qi, Q̇i) · δQi .

The two-point discrete Lagrangian is then

(26) Ld(q0, q1) := ext
Ps([0,h],Rn,q0,q1)

Ld(Q1, . . . , Qs)

where Ps([0, h],Rn, q0, q1) is the space of polynomials Q of order s from [0, h] to Rn such that the
points Qi’s determine such polynomials as discussed above. The so called “extremal” is realized
by a polynomial Q ∈ Ps([0, h],Rn, q0, q1) such that

(27) δLd(Q1, . . . , Qs) · (δQ1, . . . , δQs) + Fd(Q1, . . . , Qs) · (δQ1, . . . , δQs) = 0

for any variations (δQ1, . . . , δQs), taking into account that δq0 = δq1 = 0 and that δQi =∑s−1
j=2 ∂Qi/∂QjδQj , i = 1, s. For convenience, the previous equation (27) is developed afterwards.



10 C. M. CAMPOS, S. OBER-BLÖBAUM, AND E. TRÉLAT

The two-point discrete forward and backward forces are then formally defined by Equation
(20). Using the previous relations, we may write

F−d = h(βsb1F1 − β1bsFs)/γ and F+
d = h(α1bsFs − αsb1F1)/γ .

By the momenta-matching rule (13), we have that

−p0 = βs/γ · (D1Ld + hb1F1)− β1/γ · (DsLd + hbsFs) and

p1 = −αs/γ · (D1Ld + hb1F1) + α1/γ · (DsLd + hbsFs) .

By a linear transformation of both equations, we obtain

D1Ld(Q1, . . . , Qs) + hb1F1 = −α1p0 + β1p1 and
DsLd(Q1, . . . , Qs) + hbsFs = −αsp0 + βsp1 .

Coming back to Equation (27), we have that

0 = (δLd(Q1, . . . , Qs) + Fd(Q1, . . . , Qs)) · (δQ1, . . . , δQs)

=

s−1∑
j=2

[
(D1Ld + hb1F1)

∂Q1

∂Qj
+ (DjLd + hbjFj) + (DsLd + hbsFs)

∂Qs
∂Qj

]
δQj .

Therefore, for j = 2, . . . , s− 1, we obtain

γ(DjLd + hbjFj) = (αjβs−αsβj)(D1Ld + hb1F1) + (α1βj−αjβ1)(DsLd + hbsFs)

= (α1βs−αsβ1)(βjp1−αjp0) .

Thus, the integrator is defined by

DjLd(Q1, . . . , Qs) + hbjFj = −αjp0 + βjp1 , j = 1, . . . , s;(28a)

q0 =

s∑
j=1

αjQj and q1 =

s∑
j=1

βjQj(28b)

Besides, using the definition of the discrete Lagrangian, we have

DjLd(Q1, . . . , Qs) = h

s∑
i=1

bi

(
∂L

∂q

∣∣∣
i

∂Qi

∂Q̇j
+
∂L

∂q̇

∣∣∣
i

∂Q̇i

∂Q̇j

)

DjLd(Q1, . . . , Qs) + hbjFj = hbjṖj +
s∑
j=1

biaijPi .

Therefore, we may simply write

hbjṖj +

s∑
j=1

biaijPi = −αjp0 + βjp1 .

In summary and for a proper comparison, we write the equations that define the sG integrator
(with forces) in a pRK way, that is

q0 =

s∑
j=1

αjQj , q1 =

s∑
j=1

βjQj ,(29a)

Q̇i =
1

h

s∑
j=1

aijQj , Ṗi =
βip1 − αip0

hb̄i
+

1

h

s∑
j=1

āijPj ,(29b)

Pi =
∂L

∂q̇
(Qi, Q̇i) , Ṗi =

∂L

∂q
(Qi, Q̇i) + F (Qi, Q̇i) ,(29c)

where biaij + b̄j āji = 0 and bi = b̄j .
We remark that Equation (28a) generalizes the ones obtained in [8, 26], where the collocation

points are chosen such that c1 = 0 and cs = 1, which is a rather particular case.



HOVI IN OPTIMAL CONTROL 11

3.2.3. Similarities and differences between spRK and sG. As already mentioned, both methods
can be considered of Galerkin type. In this sense, spRK and sG could be refereed as a symplectic
Galerkin integrators of 1st and 0th kind, respectively, since spRK is derived from the 1st derivative
of an extremal polynomial and sG from the polynomial itself. At this point, a very natural
question could arise: Are spRK and sG actually two different integrator schemes? Even though
the derivations of both methods are quite similar, they are in general different (although they
could coincide for particular choices of the Lagrangian, the collocation points and the integral
quadrature). A weak but still fair argument to support this is that, at each step, spRK relies on
the determination of the micro-velocities Q̇i, while sG does so on the micro-nodes Qi. All the
other “unknowns” are then computed from the determined micro-data.

In the simplest of the cases, that is, the case where one considers a Lagrangian of the form
kinetic minus potential energy, L(q, q̇) = 1

2 q̇
TMq̇ − U(q), with M a constant mass matrix; s = 2

micro-nodes (inner-stages); and Lobatto’s quadrature, c1 = 0, c2 = 1; one may show that both
schemes, spRK (23) and sG (29), reduce to the well-known leap-frog or Verlet method. They will
differ when the previous main assumptions are violated, for instance if M is not constant or the
quadrature is other than Lobatto’s.

Example 3.1. We consider a Lagrangian with a scalar mass matrix dependent on the configuration,
that is, a Lagrangian of the form L(q, q̇) = 1

2λ(q)‖q̇‖2 − V (q), with λ : Q → R. Under this
assumption and noting λ1/2 := λ0+λ1

2 , (∇)λi := (∇)λ(qi), (∇)Vi := (∇)V (qi), i = 0, 1, the spRK
scheme (23) as well as the the sG scheme (29) reduce to

p1/2 = p0 +
h

2

(
∇λ0
2λ2a

‖p1/2‖2 −∇V0
)
,

q1 = q0 +
h

2

(
1

λa
+

1

λb

)
p1/2 ,

p1 = p1/2 +
h

2

(
∇λ1
2λ2b

‖p1/2‖2 −∇V1
)
,

with a slight difference in the subindexes appearing in the framed factors. While in the spRK
scheme, a = 0 and b = 1; in the sG scheme a = b = 1/2. It is important to note that, even though
the difference is small, it makes both schemes certainly different. Besides notice that the first two
equations define p1/2 and q1 implicitly and that the whole set reduces to the Verlet method for a
constant λ. Indeed, it is shown in [6, 38] that for a Lagrangian with constant mass matrix and
Lobatto quadrature rule, the sG and the spRK method coincide.

3.2.4. Order of the schemes. With respect to the accuracy of the schemes, for any Gaussian–like
quadrature (Gauss-Legendre, Gauss-Lobatto, Radau and Chebyshev) and any method (spRK and
sG), the schemes have a convergence order up to 2s (which is only attained by the combination
Gauss-Lobatto together with spRK) but no lower than 2s−2, being s the number of internal stages,
see Table 1. We emphasize that these orders have been determined numerically experimenting
with several “toy examples” for which exact solutions are known, e.g. the harmonic oscillator and
the 2 body problem (see Section 5), however they coincide with the known analytic results when
available, that is spRK together with the Gauss-Legendre or Gauss-Lobatto quadratures (see e.g.
[19]).

3.3. Discrete optimal control problem. For the discretization of the optimal control prob-
lem 2.1, we employ the class of high order variational integrators. By choosing an appropriate
approximation Jd of the cost functional J , the general discrete Lagrangian optimal control problem
as discretization of the Langrangian optimal control problem 2.1 reads (see also [39])

Problem 3.2 (Discrete Lagrangian optimal control problem).

(30a) min
{qk,uk}Nk=0

Jd({qk, uk}Nk=0)
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spRK sG
micro-data Q̇i Qi

polynomial degree s s− 1
variational eq.’s s+ 1 s
extra equations 1 2

quadrature

Gauss-Legendre 2s 2s− 2
Gauss-Lobatto 2s− 2 2s− 2

Radau 2s− 1 2s− 2
Chebyshev 2s− 2 2s− 2

order method
Table 1. Comparison of s-stage variational integrators.

subject to

q0 = q0,(30b)

D2L(q0, q̇0) +D1Ld(q0, q1) + F−0 = 0,(30c)

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + F+
d (qk−1, qk) + F−d (qk, qk+1) = 0,(30d)

for k = 1, . . . , N − 1 and where Equation (30d) is the forced discrete Euler-Lagrange equation
defined in (12) and Equations (30b)-(30c) correspond to the initial condition (5c) expressed by
means of the discrete Legendre transform (13). Here, the control trajectory u is approximated
by the discrete values uk, k = 0, . . . , N , such that uk ≈ u(tk). Note that for the controlled case,
the F±d are dependent on uk. To specify the discrete optimal control problem, in particular, the
approximation of the control parameter u and the cost functional J , we focus on the high order
variational integrators derived in Section 3.2, namely the spRK and the sG method, and find a
discrete version of the more general optimal control problem 2.2.

As for the approximation of q(t) and q̇(t), we also use a polynomial for the approximation of
the control function u(t) on [0, h]. For a given set of collocation points 0 ≤ c1 < . . . < cs ≤ 1 and
given control points {Ui}i=1,...,s ⊂ U we define the polynomial of degree s− 1

U(t) :=

s∑
j=1

lj(t/h)Uj

such that Ui = U(h · ci), i = 1, . . . , s. Note that the control polynomial U(t) has the same degree
as the polynomial Q(t) for the sG integrator, whereas for the spRK integrator it coincides with the
polynomial degree of Q̇(t). To take in consideration the control dependent force in the previous
derivation of the spRK and the sG schemes into account, we replace in the definitions for F±d in
Equation (20) the external force Fi = F (Qi, Q̇i) by Fi = F (Qi, Q̇i, Ui). Furthermore, for a regular
Lagrangian and by using the definitions for f and g in (7), we can write Equations (23c) and (29c)
as

f(Qi, Pi) =

(
∂L

∂q̇

)−1
(Qi, Pi) , g(Qi, Pi, Ui) =

∂L

∂q
(Qi, Q̇i) + F (Qi, Q̇i, Ui)

such that the spRK scheme can be written as

q1 =q0 + h

s∑
j=1

bjf(Qj , Pj) , p1 =p0 + h

s∑
j=1

b̄jg(Qj , Pj , Uj) ,(31a)

Qi =q0 + h

s∑
j=1

aijf(Qj , Pj) , Pi =p0 + h

s∑
j=1

āijg(Qj , Pj , Uj) ,(31b)
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with biāij + b̄jaji = bib̄j and bi = b̄j and the sG scheme reduces to

q0 =

s∑
j=1

αjQj , q1 =

s∑
j=1

βjQj ,(32a)

f(Qi, Pi) =
1

h

s∑
j=1

aijQj , g(Qi, Pi, Ui) =
βip1 − αip0

hb̄i
+

1

h

s∑
j=1

āijPj ,(32b)

where biaij + b̄j āji = 0 and bi = b̄j . Remember that the coefficients aij are different for the two
schemes (31) and (32) (see (14)). To approximate the cost functional

∫ h
0
C(q(t), p(t), u(t)) dt in

(8a) we employ the same quadrature rule that we use to approximate the action on [0, h] (cf. (17)
and (25)) such that the discrete density cost function Cd is defined by

Cd({Qi, Pi, Ui}si=1) := h

s∑
i=1

biC(Qi, Pi, Ui) ≈
∫ h

0

C(q(t), p(t), u(t)) dt.

So as to prevent a proliferation of symbols and alleviate the notation, along a time step interval
[tk, tk+1], we write qkh, p

k
h and ukh instead of {qk, {Qki }si=1, qk+1}, {pk, {P ki }si=1, pk+1} and {Uki }si=1,

respectively. We drop the superscript k if we consider an arbitrary time step interval [0, h].
With some abuse, along the whole interval [0, T ], we equally write qh, ph and uh instead of
{{qk, Qki }k=0,...,N−1

i=1,...,s , qN}, {{pk, P ki }k=0,...,N−1
i=1,...,s , pN} and {Uki }k=0,...,N−1

i=1,...,s , respectively.
With this notation we define the discrete cost function Jd as

Jd(qh, ph, uh) :=

N−1∑
k=0

Cd(q
k
h, p

k
h, u

k
h) + Φ(qN , pN )

and introduce the following two discrete optimal control problems, where the discretization in
Problem 3.3 is based on the spRK integrator and in Problem 3.4 on the sG integrator.

Problem 3.3 (Discrete optimal control problem: the spRK case).

(33a) min
qh,ph,uh

Jd(qh, ph, uh)

subject to

qk+1 =qk + h

s∑
j=1

bjf(Qkj , P
k
j ) , pk+1 =pk + h

s∑
j=1

b̄jg(Qkj , P
k
j , U

k
j ) ,(33b)

Qki =qk + h

s∑
j=1

aijf(Qkj , P
k
j ) , P ki =pk + h

s∑
j=1

āijg(Qkj , P
k
j , U

k
j )(33c)

k = 0, . . . , N − 1, i = 1, . . . , s, with biāij + b̄jaji = bib̄j and bi = b̄j ,

(q0, p0) = (q0, p0), Uki ∈ U.(33d)

Problem 3.4 (Discrete optimal control problem: the sG case).

(34a) min
qh,ph,uh

Jd(qh, ph, uh)

subject to

qk =

s∑
j=1

αjQkj , qk+1 =

s∑
j=1

βjQkj ,(34b)

f(Qki , P
k
i ) =

1

h

s∑
j=1

aijQ
k
j , g(Qki , P

k
i , U

k
i ) =

βipk+1 − αipk
hb̄i

+
1

h

s∑
j=1

āijP
k
j ,(34c)

k = 0, . . . , N − 1, i = 1, . . . , s, with biaij + b̄j āji = 0 and bi = b̄j ,

(q0, p0) = (q0, p0), Uki ∈ U.(34d)

Since Problem 3.3 has been extensively studied in [39] (as discussed in Section 3.4), in this work
we focus on Problem 3.4.
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3.4. Comparison of different solution methods. In Figure 1 (see also [39]) we present schemat-
ically different discretization strategies for optimal control problems. Starting with the Lagrangian
optimal control problem 2.1, we obtain via variation (for the derivation of the Euler-Lagrange
equations) the optimal control problem 2.2. For its solution, direct or indirect methods can be
employed (the differences of direct and indirect methods are already discussed in Section 1).

In the DMOC approach, rather than discretizing the differential equations arising from the
Lagrange-d’Alembert principle, we discretize in the earliest stage, namely already at the level of
the variational principle. Then, we perform the variation only on the discrete level which results
in a nonlinear programming problem (in particular we obtain the discrete Lagrangian optimal
control problem 3.2). Its necessary optimality conditions are derived by a dualization step as
for a standard direct method. This approach that uses the concept of discrete mechanics leads
to a special discretization of the system equations based on variational integrators. Thus, the
discrete optimal control problem inherits special properties exhibited by variational integrators as
extensively discussed in [39].

objective functional +
Lagrange-d’Alembert principle

variation

objective functional +
Euler-Lagrange equations

discretizationdualization

NLPPMP

discretization

KKTdiscrete
PMP

discretization
discrete objective function +

discrete Lagrange-
d’Alembert principle

N̂LP

K̂KT

variation

dualizationdualization

DMOCindirect direct

(C)⇐⇒

(A)⇐⇒

(B)⇐⇒

Figure 1. Optimal control for mechanical systems: the order of variation, dualization and
discretization for deriving the necessary optimality conditions.

In this work we are interested in the question under which conditions the discretized necessary
optimality conditions (discrete PMP) and the KKT conditions resulting from the discrete optimal
control problems (3.3) and (3.4) (K̂KT) are identical. To this end, we summarize by now already
known equivalence relations (A), (B) and (C) as indicated in Figure 1.
Equivalence (A). This equivalence corresponds to the commutation of variation and discretization.
For particular variational integrators their equivalence to other well-known integration methods
has been shown, e.g. the equivalence to the Störmer-Verlet method ([34]), to the Newmark al-
gorithm ([24]) or, more generally, to spRK methods ([47, 36, 19]) applied to the corresponding
Hamiltonian system. Whereas the variational derivation of spRK methods is an already known
fact and was presented in Section 3.2.1 from a slightly different point of view, we found in Sec-
tion 3.2.2 a new class of integrators, the sG methods, that applied to the Hamiltonian systems
are equivalent to variational integrators based on the discrete Lagrangian (26). Obviously, if the
variation of the discrete Lagrange-d’Alembert principle (the variational integrator) and the dis-
cretization of the Euler-Lagrange or, equivalently, the Hamiltonian equations is the same, then,
using the same discretization for the cost functional provides the same NLP in the middle and the
right branch in Figure 1.
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Equivalence (B). Of course, if NLP and N̂LP are identical (equivalence (A)), then also the KKT
and the K̂KT conditions are identical.
Equivalence (C). This equivalence corresponds to the commutation of discretization and dualiza-
tion. As already summarized in Section 1, for the class of Legendre pseudospectral methods the
commutation property has been proved if additional closure conditions are satisfied (see [16, 43]).
In [39] the commutation of discretization and dualization is proved for spRK methods, that means,
the dualization of Problem 3.3 is the same as the discretization of the necessary optimality condi-
tions using a spRK method. Due to equivalence (A), this commutation property also holds for high
order variational integrators based on the discrete Lagrangian (18). However, for general classes
of variational integrators (in particular there exist high order variational integrators that are not
equivalent to RK methods, see e.g. [38]), the commutation property is still an open question. As
new contribution in this paper, we show in Section 5 that discretization and dualization also com-
mute for the sG integrator (see Theorem 5.2) (i.e. the dualization of Problem 3.4 is the same as
the discretization of the necessary optimality conditions using an sG method). We therefore find
(besides the spRK methods) another class of variational integrators that fulfills the commutation
property.

4. Analysis of convergence of the primal variables

In this section, we present one of the main results of the paper, that is the convergence of the
primal variables. Before that, a couple of comments are necessary to clarify the assumptions and
notation that appear in the statement. Examples will enlighten the result.

We say that a function f : H → R is coercive, where H is a Hilbert space with norm ‖ · ‖ (in
our case of study H is either Rm or L2([0, T ],Rm)), if there exists a scalar factor α > 0 for which

lim inf
‖x‖→∞

f(x)

‖x‖2 ≥ α .

If f depends on a further variable, f = f(x, y), we say that f is uniformly coercive in x (with
respect to y) if the coercivity factor α does not depend on y.

In the next result, a discrete trajectory qh, either over a time step interval [0, h] or over the whole
time interval [0, T ], should be understood as a continuous trajectory along [0, h] or [0, T ], respec-
tively. To that, on [0, h], qh = {q0, {Qi}si=1, q1} can be also viewed as its own linear interpolation,
that is as the piecewise-linear continuous function qh : [0, h]→ Rn determined by

qh(0) = q0 , qh(i · h/(s+ 1)) = Qi , i = 1, . . . , s , qh(h) = q1

and linear in between. One proceeds similarly on [0, T ] and as well for ph and uh.

Theorem 4.1. Given a Lagrangian function L : TQ→ R, an external control force F : TQ×U →
T ∗Q, a density cost function C : T ∗Q×U → R and a set of collocation points 0 ≤ c1 < . . . < cs ≤ 1
defining a quadrature rule (ci, bi), let us assume that
(H1) L is regular;
(H2) F is affine on the controls, i.e. F (q, q̇, u) = F0(q, q̇) + u · F1(q, q̇);
(H3) C is uniformly coercive in u and smooth in (q, p);
(H4) (OCP ), the continuous Problem 2.2, has a unique solution (q̄, p̄, ū);
(H5) bi > 0 for i = 1, . . . , s; and
(H6) the associated spRK or sG scheme is convergent (for L, F and any fixed u).

Then (q̄h, p̄h, ūh) converges (up to subsequence) to (q̄, p̄, ū) as h→ 0 (N →∞), strongly in (q, p)
and weakly in u, where (q̄h, p̄h, ūh) is the solution to (OCP )h, the corresponding discrete Problem
3.3 or 3.4.

Proof. The assumption of coercivity H3 on the density cost function C (recall Φ is assumed to
be bounded from below) implies the coercivity of the total cost functional J and, together with
the assumption of positiveness H5 on the weight coefficients bi, ensures also the coercivity of the
discrete density cost Cd and of the discrete total cost Jd: Indeed, from the definition and for uh
big enough,

Cd(qh, ph, uh;h)

‖uh‖2
≥ hmin

i
biα and

Jd(qh, ph, uh;h)

‖uh‖2
≥ T min

i
biα ,
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where (qh, ph, uh) represents a one step trajectory on the left while a full trajectory on the right.
The coercivity of J follows similarly by integration. We stress the fact that Jd is uniformly coercive
with respect to the time step h.

Besides we have from H1 that, for h small enough, the discrete Lagrangian Ld is regular. There-
fore for each control set uh, a unique solution (qh, ph) to the discrete Euler-Lagrange equations
exists. The minimization in (OCP )h is then nothing but a finite dimensional minimization prob-
lem whose solution existence is provided by the coercivity of Cd. We denote (q̄h, p̄h, ūh) such
solution.

Since the discrete cost Jd is uniformly coercive with respect to h, the sequence (ūh), thought in
L2([0, T ], U), is bounded. Hence, up to subsequence, it converges to some control ũ ∈ L2([0, T ], U),
for the weak topology of L2. It only remains to show that (q̃, p̃, ũ), where (q̃, p̃) is the unique
solution of the mechanical system corresponding to the control ũ (hypothesis H1), is in fact the
same point as (q̄, p̄, ū).

Firstly, by H2, the controls enter the continuous and discrete dynamical equations (5b), (23a),
(23b), (29a) and (29b) linearly. It follows that (q̄h, p̄h) converges uniformly to (q̃, p̃) (more technical
details on this standard reasoning may be found in [49]). Secondly, we observe that the control
ũ is optimal: Indeed, since the discrete cost Jd is an approximation to the continuous one J , we
have that for some exponent r ≥ 1

J(q̄h, p̄h, ūh) = Jd(q̄h, p̄h, ūh;h) +O(hr)

≤ Jd((q̄, p̄, ū)h;h) +O(hr)

= J(q̄, p̄, ū) +O(hr) ,

where (q̄, p̄, ū)h, for each h, represents simply the evaluation of (q̄, p̄, ū) at the collocation points
of each time interval. Passing to the limit, from the lower semi-continuity of J with respect to u
(given by the integral expression and hypothesis H3), it follows that

J(q̃, p̃, ũ) ≤ J(q̄, p̄, ū) .

Hence (q̃, p̃, ũ) is optimal and by uniqueness coincides with (q̄, p̄, ū). �

Remark 4.2. Even though the rather “classical” definition of coercivity used here is perhaps less
restrictive than the one given in [17, 18], there is no direct relation between them in the sense
that none of them implies or is implied by the other. They have non-empty intersection. In there,
the coercivity is a classical sufficient second-order assumption ensuring the absence of conjugate
points. In here, the coercivity implies the existence of a (global) optimal control. The framework
that 4.1 proposes has some advantages: It permits to prove without difficulty the existence of
solutions for the discretized problem and it ensures the convergence from a simple topological
argument. Moreover, the proof itself has the potential of being more general, for instance to
consider final constraints (by means of finer arguments, the concept of end-point mapping, the
general conjugate point theory).

Remark 4.3. It is worth to note that the previous proof withstands some easy generalizations. If
we now take more general dynamics (nonlinear force in u) and costs, then the above reasoning
works as well provided the cost is coercive in some Lp and the dynamics satisfy, for instance,

lim sup
‖u‖→∞

‖Ψ(q, p, u)‖
‖u‖r = 0 , p > r ,

where Ψ = 0 stands for the dynamical constraints (5b).

Remark 4.4. A convergence proof (including consistency and stability) for general variational
integrators (as assumed in H6) is topic of ongoing research. For particular classes, the conver-
gence is proven by showing that the variational integrator is equivalent to another well-known
convergent method, as for example for symplectic partitioned Runge-Kutta methods. For a recent
convergence analysis for Galerkin variational integrators by means of variational error analysis
we refer to [20]. The assumption H4, the uniqueness of the solution of (OCP ), is a classical
one. It can be weakened by stating the result in terms of closure points as follows. We assume
that C0([0, T ], T ∗Q) is endowed with the uniform convergence topology and that L2([0, T ], U) is
endowed with the weak topology. Then every closure point of the family of solutions (q̄h, p̄h, ūh)
of (OCP )h in C0([0, T ], T ∗Q)× L2([0, T ], U) is a solution of (OCP ).
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Remark 4.5. In the formulation of the previous discrete optimal control problems 3.3 and 3.4,
we have chosen to discretize the control parameter and the cost functional in accordance to the
dynamical discretization. Other possibilities are available which must be pondered. Let’s assume
temporarily that, besides the original set of collocation points 0 ≤ c1 < . . . < cs ≤ 1, we have a
couple of extra sets of them: 0 ≤ d1 < . . . < dr ≤ 1 and 0 ≤ e1 < . . . < et ≤ 1, for which U is
determined by the former and J is discretized by the quadrature rule associated to the latter. That
is, U : [0, h]→ R is a polynomial of order r − 1 determined by r points Ūi = U(dih), i = 1, . . . , r,
and for which Uj := U(cjh), j = 1, . . . , s, and Ûk := U(ekh), k = 1, . . . , t, are mere evaluations.
And the cost function J is discretized by the formula h

∑N−1
k=0

∑t
i=1 b̂iC(Q̂ki , P̂

k
i , Û

k
i ), where with

a similar notation the “hat” stands for weights and evaluations related to the e’s. Now, different
cases arise:

• If r > t, one does an underevaluation of the controls within the discrete cost functional
which will allow these to diverge (for instance a control could not appear explicitly in the
discrete cost and therefore take any arbitrary value).
• If on the contrary r < t, one does an overevaluation of the controls which, in the case of

a coercive discrete cost function, will only increase the computational cost with, a priori,
no convergence benefits.
• Therefore, the case r = t seems to be the best fit, which is the case where there is a

minimal number of evaluations of the controls (each control is evaluated just once in the
discrete cost) so to have convergence under the assumption of coercivity.

Assuming the last situation and continuing with the discussion, further cases arise:
• On the one hand, if r > s, the convergence rate of the controls will be limited by the

accuracy of the discrete dynamics.
• On the other hand, if r < s, the convergence rate of the controls will suffer from a

computational payload by the high accuracy of the dynamics.
• Therefore, the case r = s seems again to be the best fit, which is the case that equates

accuracy of the dynamics with convergence rate of the controls.
Finally, under the assumption r = s = t, choosing a unique set of collocation points 0 ≤ c1 <
. . . < cs ≤ 1 (we drop the “hats”, “bars”, e’s and d’s), one minimizes the number of polynomial
evaluations and therefore the total computational cost (besides of simplifying the problem).

In the following example, we solve a simple optimal control problem with a linear dynamical
constraint and a quadratic cost function. The numerical experiments show, in the spirit of [17] and
the previous discussion before it, how a good choice and proper combination of the discretization
gives a “fast” convergence of the scheme, while other combinations show “slow” convergence or
even divergence of the controls, all of it exemplifying Theorem 4.1.

Example 4.6. Consider the problem

min
q,q̇,u

∫ T

0

(q̇2 + u2) dt(35a)

s.t. q̈ = 1 + u , (q(0), q̇(0)) = (0, 0)(35b)

for which the functions

q(t) =
cosh(t)− 1

cosh(T )
and u(t) =

cosh(t)

cosh(T )
− 1

are the unique solution. We identify from the forced Euler-Lagrange equation (35b) the Lagrangian
function L(q, q̇) = 1

2 q̇
2 + q and the control force F (q, q̇, u) = u. The density cost function is

obviously C(q, q̇, u) = q̇2 + u2.
We discretize the mechanical system by using a symplectic Galerkin approach together with a

Lobatto quadrature for s = 3 points. We initially assume that the controls are also discretized by
r = 3 nodes. Then the right- hand side equations of (29b) or (34c) are

Ṗ1 = −p0
h/6 + 1

h (4Q̇1 + 2Q̇2) = 1 + U1 ,(36a)

Ṗ2 = 1
h (−Q̇1 + Q̇3) = 1 + U2 ,(36b)

Ṗ3 = p1
h/6 + 1

h (2Q̇2 − 4Q̇3) = 1 + U3 ,(36c)
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where the micro-veloticies Q̇i are given by the left equations of (29b) or (34c), which are in this
particular case  Q̇1

Q̇2

Q̇3

 =
1

h

 −3 4 −1
−1 0 1

1 −4 3

 Q1

Q2

Q3


For the cost function, we consider four different discretizations with Lobatto’s quadrature rule

for t = 1, 2, 3, 4 quadrature points. These are respectively

Cd(qh, ph, uh) = h
(
Q̇2

2 + U2
2

)
,(37a)

Cd(qh, ph, uh) =
h

2

(
Q̇2

1 + Q̇2
3 + U2

1 + U2
3

)
,(37b)

Cd(qh, ph, uh) =
h

6

(
Q̇2

1 + 4Q̇2
2 + Q̇2

3 + U2
1 + 4U2

2 + U2
3

)
,(37c)

Cd(qh, ph, uh) =
h

12

(
(3−

√
5)
(
Q̇2

1 + (3−
√

5)Q̇2
2 + Q̇2

3+
)

(37d)

+(1− 1/
√

5)
(

(Q̇1 + Q̇2)2 + (Q̇2 + Q̇3)2
))

+
h

30

(
2(U1 + U2)2 + (U1 − U3)2 + 2(U2 + U3)2

+U2
1 + 12U2

2 + U2
3

)
.

The first two discretizations, Equations (37a) and (37b), are clearly not coercive with respect to
the controls (U1 and U3 are missing in (37a) and U2 is missing in (37b)), which will be allowed
to diverge (see Figures 2a and 2b). Nonetheless the last two discretizations, Equations (37c) and
(37d), are indeed coercive, still one outperforms the other in terms of convergence (see Figures 2c
and 2d). The discrete cost function (37d), besides of having a higher computational cost, shows a
slower convergence rate. The discrete cost function (37c) corresponds to the method presented in
Problem (34) and Theorem 4.1.

We continue by assuming that the approximated control U is determined only by two points,
that is

U(t) = Ũ1 + t(Ũ3 − Ũ1)

(we note Ũ3 instead of Ũ2 to make the notation more appealing). The previous set of Equations
(36) and (37) are then updated by merely substituting the controls by

U1 = Ũ1 , U2 = 1
2 (Ũ1 + Ũ3) , and U3 = Ũ3 ,

which leads to

Cd(qh, ph, uh) = h
(
Q̇2

2 + (Ũ1 + Ũ3)2/4
)
,(38a)

Cd(qh, ph, uh) =
h

2

(
Q̇2

1 + Q̇2
3 + Ũ2

1 + Ũ2
3

)
,(38b)

Cd(qh, ph, uh) =
h

6

(
Q̇2

1 + 4Q̇2
2 + Q̇2

3 + Ũ2
1 + (Ũ1 + Ũ3)2 + Ũ2

3

)
,(38c)

Cd(qh, ph, uh) =
h

12

(
(3−

√
5)
(
Q̇2

1 + (3−
√

5)Q̇2
2 + Q̇2

3+
)

(38d)

+(1− 1/
√

5)
(

(Q̇1 + Q̇2)2 + (Q̇2 + Q̇3)2
))

+
h

6

(
Ũ2
1 + (Ũ1 + Ũ3)2 + Ũ2

3

)
.

In this occasion, only the first discretization, Equation (38a), defines a non-coercive discrete cost
function (see Figure 3a). From the rest (see Figures 3b-3d), Equations (38c) and (38d) show
the fastest convergence rate, although slow on the controls and with a computational payload for
(38d). Equation (38c) corresponds to a discretization of the cost with three quadrature points.
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Figure 2. Convergence behavior of the discrete solution for the discrete cost
functions given in (37).
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Figure 3. Convergence behavior of the discrete solution for the discrete cost
functions given in (38).
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5. Commutation of discretization and dualization

In this section we investigate the equivalence (C) in Figure 1 for the special choice of sG
discretization of the optimal control problem 2.2. To this end, we analyze and compare the
adjoint systems for the continuous and the discrete optimal control problems.

Throughout the section we assume that all controls under consideration do not saturate the
constraints. In other words, we assume that the optimal control is in the interior of the set of
constraints on controls. This is obviously the case if U = Rm. This assumption allows us to avoid
the typical situation of bang-bang controls, and under slight extra conditions, to derive (from
the Pontryagin Maximum Principle) extremal controls that are smooth functions of the state and
costate. The necessary optimality conditions (10) are

λ̇ = −∇qC − λ · ∇qf − ψ · ∇qg , λ(T ) = ∇qΦ(q(T ), p(T )) ,(39a)

ψ̇ = −∇pC − λ · ∇pf − ψ · ∇pg , ψ(T ) = ∇qΦ(q(T ), p(T )) ,(39b)
0 = ∇uC + ψ · ∇ug .(39c)

If we use the sG integrator for the discretization of Problem 2.2, we obtain the discretized optimal
control problem 3.4. To derive the necessary optimality conditions for the discretized optimal con-
trol problem, we introduce the discrete adjoint vectors (covectors in Rn) λ0, . . . , λN , µ0, . . . , µN−1,
ψ0, Λ0

i , . . . ,Λ
N−1
i , Ψ0

i , . . . ,Ψ
N−1
i , i = 1, . . . , s, and define the discrete optimal control Lagrangian

as

Ld =

N−1∑
k=0

s∑
i=1

hbiC
k
i + Φ(qN , pN )− λ0 · (q0 − q0)− ψ0 · (p0 − p0)

+

N−1∑
k=0

µk ·
qk − s∑

j=1

αjQkj

− λk+1 ·

qk+1 −
s∑
j=1

βjQkj


+

s∑
i=1

Λki ·

hfki − s∑
j=1

aijQ
k
j


+ Ψk

i ·

hgki − βipk+1 − αipk
b̄i

−
s∑
j=1

āijP
k
j

 ,(40)

where Cki is a short notation for C(Qki , P
k
i , U

k
i ) (analogously for fki and gki ). The necessary

optimality conditions (KKT equations) are derived by differentiation w.r.t. the discrete variables
qk, pk, k = 0, . . . , N and Qki , P ki , Uki , k = 0, . . . , N − 1, i = 1, . . . , s, which leads to

for k = 0, . . . , N − 1 : µk − λk = 0,(41a)
∇qΦ(qN , pN )− λN = 0,(41b)

−ψ0 +

s∑
i=1

αi

b̄i
Ψ0
i = 0,(41c)

for k = 1, . . . , N − 1 :

s∑
i=1

αi
b̄i

Ψk
i −

s∑
i=1

βi

b̄i
Ψk−1
i = 0,(41d)

∇pΦ(qN , pN )−
s∑
i=1

βi

b̄i
ΨN−1
i = 0,(41e)

1

h

(
− αiµk + βiλk+1 −

s∑
j=1

ajiΛ
k
j

)
+ bi∇qCki + Λki · ∇qfki + Ψk

i · ∇qgki = 0,(41f)

− 1

h

s∑
j=1

ājiΨ
k
j + bi∇pCki + Λki · ∇pfki + Ψk

i · ∇pgki = 0,(41g)

bi∇uCki + Ψk
i · ∇ugki = 0,(41h)
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with k = 0, . . . , N − 1, i = 1, . . . , s, for the last three equations. We transform the necessary
optimality conditions by defining

Γki := Λki /b̄i and χki := Ψk
i /b̄i for k = 0, . . . , N − 1, i = 1, . . . , s,(42a)

ψ−k :=

s∑
i=1

αiχki , k = 0, . . . , N − 1, and ψ+
k :=

s∑
i=1

βiχk−1i , k = 1, . . . , N,(42b)

such that Equation (41d) reduces to ψ−k = ψ+
k := ψk. By eliminating the variables µ0, . . . , µN−1

with Equation (41a) and by exploiting the conditions on the coefficients biaij + b̄j āji = 0 and
bi = b̄i, we obtain the following discrete adjoint system

ψk =

s∑
j=1

αjχkj ,(43a)

ψk+1 =

s∑
j=1

βjχkj ,(43b)

−∇qCki − Γki · ∇qfki − χki · ∇qgki =
βiλk+1 − αiλk

hb̄i
+

1

h

s∑
j=1

āijΓ
k
j ,(43c)

−∇pCki − Γki · ∇pf − χki · ∇pgki =
1

h

s∑
j=1

aijχ
k
j ,(43d)

∇uCki + χki · ∇ugki =0 ,(43e)

for k = 0, . . . , N − 1, i = 1, . . . , s, and with final conditions

(43f) λN = ∇qΦ(qN , pN ) and ψN = ∇pΦ(qN , pN ) ,

where

(43g) biaij + b̄j āji = 0 and bi = b̄j .

Note that the adjoint scheme (43a)-(43d) together with the final constraints (43f) and the condi-
tions on the coefficients (43g) is exactly the symplectic Galerkin integrator applied to the adjoint
system (39a)-(39b). To ensure that the discrete adjoint system (43) is indeed equivalent to the
necessary optimality conditions defined in (41) we show the following proposition.

Proposition 5.1. If b̄i > 0 for each i, then the necessary optimality conditions (41) and the dis-
crete adjoint system (43) are equivalent. That is, if (µ0, . . . , µN−1,Λ

0
i , . . . ,Λ

N−1
i ,Ψ0

i , . . . ,Ψ
N−1
i ),

i = 1, . . . , s, satisfy (41), then (43) hold for (ψk,Γ
k
i , χ

k
i ) defined in (42a) and (42b). Conversely, if

(ψ1, . . . , ψN ,Γ
0
i , . . . ,Γ

N−1
i , χ0

i , . . . , χ
N−1
i ), i = 1, . . . , s, satisfy (43), then (41) hold for (µk,Λ

k
i ,Ψ

k
i )

defined in (41a) and (42a).

Proof. We already derived the adjoint system (43) starting from the necessary optimality condi-
tions (41). We now suppose that (ψ1, . . . , ψN ,Γ

0
i , . . . ,Γ

N−1
i , χ0

i , . . . , χ
N−1
i ), i = 1, . . . , s, satisfy

the adjoint system (43). Equation (41a) holds by assumption. The condition for λN in (43f) and
(41b) are identical. The condition for ψN in (43f) together with Equation (43b) for k = N −1 and
the definition (42a) yields (41e) whereas Equation (43a) for k = 0 together with definition (42a)
yields (41c). By subtracting Equations (43a) and (43b) for the same index k and using defini-
tion (42a) we obtain (41d). Finally, by taking the condition (43g) on the coefficients into account,
(43c)-(43e) and definition (42a) yield (41f)-(41h), respectively. �

With the classical Legendre assumption, i.e. (∂2H/∂u2)(q∗, p∗, u∗, λ, ψ, 1) is a positive definite
symmetric matrix, with Equation (39c) u can be expressed as function of the states and the
adjoints, u = u(q, p, λ, ψ). We denote by ν and η the functions defined by

ν(q, p, λ, ψ) = (−∇qC(q, p, u)− λ · ∇qf(q, p)− ψ · ∇qg(q, p, u)) |u=u(q,p,λ,ψ) ,
η(q, p, λ, ψ) = (−∇pC(q, p, u)− λ · ∇pf(q, p)− ψ · ∇pg(q, p, u)) |u=u(q,p,λ,ψ) .
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With some abuse of notation, let g(q, p, λ, ψ) denote the function g(q, p, u(q, p, λ, ψ)). In the case
where the control has the form Uki = u(Qki , P

k
i ,Γ

k
i , χ

k
i ), the state and adjoint scheme based on

the symplectic Galerkin integrator can be expressed as

qk =

s∑
j=1

αjQkj , qk+1 =

s∑
j=1

βjQkj , ψk =

s∑
j=1

αjχkj , ψk+1 =

s∑
j=1

βjχkj ,(44a)

fki =
1

h

s∑
j=1

aijQ
k
j , gki =

βipk+1 − αipk
hb̄i

+
1

h

s∑
j=1

āijP
k
j ,(44b)

ηki =
1

h

s∑
j=1

aijχ
k
j , νki =

βiλk+1 − αiλk
hb̄i

+
1

h

s∑
j=1

āijΓ
k
j ,(44c)

k = 0, . . . , N − 1, i = 1, . . . , s,

(44d) q0 = q0, p0 = p0, λN = ∇qΦ(qN , pN ), ψN = ∇pΦ(qN , pN ),

where biaij + b̄j āji = 0 and bi = b̄j and where fki and gki are short notations for f(Qki , P
k
i ) and

g(Qki , P
k
i ,Γ

k
i , χ

k
i ) (analogously for ηki and νki ).

Scheme (44) can be viewed as symplectic Galerkin discretization of the two-point boundary
value problem

q̇ = f(q, p) , q(0) = q0 ,(45a)

ṗ = g(q, p, λ, ψ) , p(0) = p0 ,(45b)

λ̇ = ν(q, p, λ, ψ) , λ(T ) = ∇qΦ(q(T ), p(T )) ,(45c)

ψ̇ = η(q, p, λ, ψ) , ψ(T ) = ∇qΦ(q(T ), p(T )) ,(45d)

where the variables (q, ψ) and (p, λ) are treated in the same way, respectively. Since the same
discrete scheme is used for state and adjoint system, the orders of approximation coincide. This
leads to the following statement.

Theorem 5.2 (Commutation property). Given the (OCP ) 2.2, besides of H1, H3, H4 from
Theorem 4.1, we assume that (∂2H/∂u2)(q∗, p∗, u∗, λ, ψ, 1) is a positive definite symmetric matrix.
If a convergent symplectic Galerkin method with bi > 0, i = 1, . . . , s, is used for the discretization
of the state system, dualization and discretization commute, i.e. the dualization of Problem 3.4
coincides with the sG discretization of the boundary value problem (45).

Remark 5.3. In spirit of the Covector Mapping Principle (see [16]), the order-preserving map
between the adjoint variables corresponding to the dualized discrete problem (KKT) and the
discretized dual problem (discrete PMP) is given by Equation (42a).

Remark 5.4. If the controls do not saturate the constraints, i.e. control constraints are active, the
optimal solution is typically only Lipschitz continuous. Then we expect analogously to [13] that
convergence rates are limited to order two even for higher order approximation schemes.

6. Conclusions

In this work, we investigate the application of high order variational integrators to the numerical
solution of optimal control problems of mechanical systems. We derive two different schemes of
high order variational integrators, the spRK and the sG method, which are both used for the
discretization of a Lagrangian optimal control problem. The convergence of the primal variables
of the resulting discrete optimal control problems is proven. Furthermore, the commutation of
dualization and discretization for the sG method is shown, which extends the result in [39] to
another class of variational integrators that fulfills this commutation property and directly implies
that the Covector Mapping Principle is satisfied. In particular, due to the commutation, not
only the order of the adjoint scheme but also the discretization method itself is preserved and
in contrast to Legendre pseudospectral methods or classical Runge-Kutta methods, no additional
closure conditions (see [16]) or conditions on the Runge Kutta coefficients (see [17]), respectively,
are required.



HOVI IN OPTIMAL CONTROL 23

The fulfillment of the Covector Mapping Principle provides a convenient way to prove the
convergence of the dual variables (as done, for example, in [17]). With Theorem 5.2 the solution
of the discretized direct problem coincides with the discrete solution of a shooting method applied
to the necessary conditions of optimality. By showing the convergence of the shooting approach,
we can conclude directly the convergence of the direct approach. The convergence proof for the
adjoint variables is left for future work.

In the present paper we restricted ourselves to optimal control problems without any constraint
on the final state. If we consider more general optimal control problems, involving constraints on
the final state, then we expect that we will have to use the general conjugate point theory (see
[5]), in order to provide second-order conditions for optimality, related with the classical sensitivity
analysis along a given optimal trajectory. Also, if there are some constraints on the final point then
abnormal extremals may occur in the application of the Pontryagin Maximum Principle, which
may raise a major problem in the analysis. Fortunately, it is known that abnormal minimizers do
not exist under generic assumptions on the system and on the cost (see [9]), and we expect that
the results presented in this paper may hold in such a generic context. Otherwise the possible
presence of abnormal minimizers is responsible for a loss of compactness (in particular, adjoint
vectors do not stay in a compact anymore, see [49]), which may imply the failure of our method
of proof, and it is not very clear then if we can expect that the Covector Mapping Principle hold
true in that case. These general considerations will be investigated in future work. We stress
again that, in the present paper, we have restricted ourselves to a more simple and tractable
case. Once again, note that we have considered control-affine systems with (quasi)-quadratic
costs, with assumptions ensuring the smoothness of optimal controls (as functions of the state and
of the costate). As in [17], our theory can be applied whenever there exist control constraints,
provided the optimal controls under consideration belong to the interior of the set of constraints.
Otherwise, in the general case controls may saturate the constraints, typically bang-bang controls
do appear and then additional assumptions must be done in order to ensure a nice regularity
of controls as functions of the state and of the costate. For instance, it is desirable to avoid
chattering phenomena, in which a given optimal bang-bang control can have an infinite number
of commutations over a compact interval. Also, we expect that one has to use the corresponding
conjugate point theory in the bang-bang case. Such a theory does exist in the purely bang-bang
case (see [2, 37]) but then requires additional assumptions (ruling out, in particular, chattering).
It can be noted that a general conjugate point theory, involving all possible subarcs – free, bang,
singular, boundary – is still to be done. In order to get a general Covector Mapping Principle,
such a complete theory is certainly required.

Another interesting issue is the application of more general symplectic and structure preserving
methods in optimal control. Whereas the commutation property is shown for an already rich
class of symplectic integrators (spRK and sG) it is still an open question, if it is satisfied for any
variational and thus, any symplectic integrator (note that the classes of variational and symplectic
integrators are identical, see e.g. [19]).
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